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A B S T R A C T

Uncovering the genetic and evolutionary basis of cryptic speciation is a major focus of evolutionary biology.
Next Generation Sequencing (NGS) allows the identification of genome-wide local adaptation signatures, but has
rarely been applied to cryptic complexes - particularly in the soil milieu - as it is the case with integrative
taxonomy. The earthworm genus Carpetania, comprising six previously suggested putative cryptic lineages, is a
promising model to study the evolutionary phenomena shaping cryptic speciation in soil-dwelling lineages.
Genotyping-By-Sequencing (GBS) was used to provide genome-wide information about genetic variability be-
tween 17 populations, and geometric morphometrics analyses of genital chaetae were performed to investigate
unexplored cryptic morphological evolution. Genomic analyses revealed the existence of three cryptic species,
with half of the previously-identified potential cryptic lineages clustering within them. Local adaptation was
detected in more than 800 genes putatively involved in a plethora of biological functions (most notably re-
production, metabolism, immunological response and morphogenesis). Several genes with selection signatures
showed shared mutations for each of the cryptic species, and genes under selection were enriched in functions
related to regulation of transcription, including SNPs located in UTR regions. Finally, geometric morphometrics
approaches partially confirmed the phylogenetic signal of relevant morphological characters such as genital
chaetae. Our study therefore unveils that local adaptation and regulatory divergence are key evolutionary forces
orchestrating genome evolution in soil fauna.

1. Introduction

Cryptic species are biological entities that cannot readily be dis-
tinguished morphologically - as defined principally through humans’
visual perception of morphology - yet evidence indicates that they
followed different evolutionary trajectories (Bickford et al., 2007). The
evolutionary processes underlying the origins of cryptic species remain
largely unknown, therefore hampering our understanding on how they
adapt to new environments and how frequently they exchange genes
with each other, and consequently having an effect on biodiversity
assessment. For instance, while in species with high morphological
disparity (such as butterflies or fish) divergent selection often leads to
sister species with markedly different body shapes or colours (Jiggins
et al., 2001; Langerhans et al., 2007), in other species it might affect
traits causing reproductive isolation with no clear morphological basis,
such as behaviours (Janzen et al., 2009; Jones et al., 2016).

Identifying and defining cryptic species is even more challenging in

the case of soil fauna due to their marked degree of morphological
stasis, where diagnostic morphological characters are often scarce. This
lack of morphological diversification could result from a series of fac-
tors, including low standing genetic variation and/or developmental
constraints on the morphospace (Bickford et al., 2007; Appeltans et al.,
2012), and a relatively constant through time environment coupled to
strong stabilizing selection leading to retention of a common, shared
morphology (reviewed in Marchán et al. (2018a)). The answer to this
may rely on understanding how adaptation to different environments
orchestrates speciation and to what extent it depends on morphological
change. Another aspect that should not be disregarded is the existence
of differences in unexplored (cryptic) morphological characters, as in
the case of pseudocryptic or pseudo-sibling species (Knowlton, 1993),
particularly in groups were taxonomy is daunting.

Local adaptation occurs when a population of organisms have
higher average fitness in their local environment compared to in-
dividuals elsewhere (Kaweki and Ebert 2004). As environments vary
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across space and time, local conditions determine which traits are fa-
voured by natural selection. Next Generation Sequencing (NGS) tech-
niques have definitely facilitated the identification of some of the loci
responsible for adaptive differences among populations (Catchen et al.,
2017). Two basic approaches for identifying putatively locally adaptive
loci are mainly used: the identification of loci with unusually high ge-
netic differentiation among populations (differentiation outlier
methods), and the search for correlations between local population
allele frequencies and local environments (genetic-environment asso-
ciation methods) (Hoban et al., 2016), the latter definitively more
challenging to measure in soil environments or ecosystems. As natural
selection acts on phenotypic traits, detecting the loci that accumulate
high genetic differentiation would elucidate which loci are eventually
responsible for such phenotypes. Such an approach has been largely
unexplored in cryptic taxa. In a similar and complementary way, in-
tegrative taxonomy has yet to be widely applied to cryptic taxonomic
complexes, especially through the application of state-of-the-art meth-
odologies such as high-throughput sequencing or geometric morpho-
metrics. To date, approaches aiming at exploring all these different
levels of variation in cryptic lineages - particularly in soil fauna - are
limited.

Cryptic diversity is widespread in annelids (e.g., Struck et al., 2017),
particularly amongst earthworms (King et al., 2008; Novo et al., 2010;
Shekhovtsov et al., 2013; Taheri et al., 2018). One of the most studied
cryptic species groups among these animals is the former Hormogaster
elisae Álvarez, 1977 (Annelida, Oligochaeta, Hormogastridae), cur-
rently in the genus Carpetania after Marchán et al. (2018b). In a recent
study, six highly divergent cryptic lineages of C. elisae were identified
using a set of mitochondrial and nuclear markers (Marchán et al.,
2017), but their validation as species and consequent description were
hindered by the absence of clear-cut limits between the putative spe-
cies. This species complex shows high mitochondrial divergence be-
tween lineages (11–17% cytochrome C oxidase subunit I average un-
corrected pairwise distance) confirmed by segregation of nuclear
haplotypes, as well as an ancient estimated divergence age (60–35mya)
(Marchán et al. 2017). Those lineages display strong spatial isolation
with non-overlapping ranges separated by narrow borders and clear
hints of reproductive isolation shown by cross-breeding experiments
(Marchán et al. 2017). In addition, slight variation in some cryptic
morphological characters (genital chaetae, relative position of septa
and spermathecae) was found but was not fully tested in a comparative
framework (Marchán et al., 2017, 2018b). These characteristics make
the Carpetania species complex a promising model to further explore the
underlying evolutionary phenomena shaping cryptic speciation in soil-
dwelling lineages.

Herein, we test the hypothesis that genome-wide and unnoticed
morphological differences may be involved in cryptic speciation in soil
fauna by exploring the terrestrial annelid Carpetania cryptic complex
through an integrative taxonomic approach informed by state-of-the-art
methodologies including Genotyping-by-Sequencing (GBS) and geo-
metric morphometrics. Furthermore, we identify and characterize
which loci may be putatively involved in local adaptation, which
functions they may fulfil in the biology of this species complex and how
they may have triggered cryptic speciation.

2. Materials and methods

2.1. Specimen sampling

Different Carpetania populations (defined as the group of specimens
collected from a single location, based on the assumptions of mono-
phyly and low dispersal ability seen in Novo et al. (2009, 2010) were
sampled from 2007 to 2015, usually in November (autumn) or Feb-
ruary-April (spring) sampling seasons. Information about their localities
was published in Novo et al. (2009, 2010) and Marchán et al. (2017). In
all cases, specimens were collected by hand and fixed in the field in

96% EtOH, with two subsequent ethanol changes and finally preserved
at−20 °C.

Seventeen of those populations (Suppl. Table 1, Fig. 1) representing
all the lineages and internal clades from Marchán et al. (2017) were
chosen for the GBS analysis, with five individuals from each population
totaling 85 individuals. When possible, populations at both sides of a
border between range of the previously-identified cryptic lineages were
chosen.

2.2. GBS library preparation and sequencing

DNA extraction from gizzard muscle tissue was performed at the
Biotechnology Resource Center (BRC) at Cornell University. DNA con-
centrations were measured using Qubit and normalized so as all sam-
ples had the same concentration when pooling, and a GBS library was
prepared using the restriction enzyme PstI following the GBS protocol
from Elshire et al. (2011). Sequencing was carried out in a NextSeq500
Illumina platform with 85 multiplexed samples on a single lane, with a
read length of 75 bp reads.

2.3. SNP calling and filtering

SNP calling was performed using the software STACKS2 v 2.3e
(Catchen et al., 2013). Raw reads were quality-filtered and demulti-
plexed according to individual barcodes using the script pro-
cess_radtags.pl as implemented in STACKS (Catchen et al., 2013). GBS
loci were further assembled, and SNPs were called using the denovo_-
map.pl pipeline also implemented in STACKS2. A first dataset (‘de novo-
all SNPs’ hereafter) used for subsequent phylogenetic reconstruction
was built using a minimum coverage to identify a stack of 3× (−m 3),
a maximum number of differences between two stacks in a locus in each
sample of five (−M 3), and a maximum number of differences among
loci to be considered as orthologous across multiple samples of five (−n
5). These parameters were chosen following the best practices de-
scribed in Paris et al. (2017). The script export_sql.pl in the STACKS2
package was used to extract locus information from the catalogue, fil-
tering for a maximum number of missing samples per locus of 50%. The
function populations in the STACKS2 package was used to export a
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Fig. 1. Populations of the Carpetania elisae complex included in this work -and
their abbreviation- shown in a geographical context. All populations from
Marchán et al. (2017) are shown for reference. Previously defined cryptic
lineages are represented by a colour: red I, dark blue II, green III, light blue IV,
orange V, pink VI. Color codes and nomenclature are kept throughout the
manuscript. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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dataset of full sequences and a dataset of SNPs of the filtered loci in VCF
and Phylip formats. A second dataset (‘de novo-one SNP’ hereafter) was
inferred following the same pipeline but just selecting a random SNP
per locus (using the function write_single_SNP) in order to leverage
further phylogenetic analysis (see below). In addition, we constructed a
third dataset (‘reference-one SNP’) in a similar way as described above
but mapping against a reference transcriptome of Carpetania elisae
lineage 1 (collected in El Molar, Spain), therefore calling only SNPs
from protein coding genes (including both protein coding regions - CDS
- and untranslated region - UTR, the regions of an mRNA directly up-
stream (5′ -UTR) or downstream (3′ -UTR) from the initiation codon).
Transcriptome reads for the reference transcriptome assembly were
retrieved from Novo et al. (2013) (NCBI Short Read Archive project:
PRJNA196484) and the assembly assembled using Trinity v. r2013-
08–14 (Haas et al., 2013) was provided by the authors and has been
deposited in the Harvard Dataverse repository associated to this study
(https://doi.org/10.7910/DVN/RVMQND).

These three datasets were used for phylogenetic reconstruction and
further analyses of selection.

Genomic diversity and population genomics statistics (number of
private alleles, number of polymorphic nucleotide sites across the da-
taset, percentage of polymorphic loci, average observed and expected
heterozygosity per locus, average nucleotide diversity π, average pair-
wise fixation index (FST), and average inbreeding coefficient (FIS) were
obtained from the output of the populations function in STACKS2.

2.4. Phylogenetic analyses

Phylogenetic relationships were inferred from the concatenated
sequences of the three SNP datasets using a maximum likelihood (ML)
approach as implemented in RAXML-HPC v8 (Stamatakis, 2014) in
Cipres Science Gateway (https://www.phylo.org/) with default para-
meters (GTRCAT model, ascertainment bias correction (Lewis, 2001),
1000 rapid bootstrap inferences).

The multispecies coalescent model was implemented through
SVDQuartets (Chifman and Kubatko, 2014) to infer the unrooted spe-
cies tree. This method has the additional advantage of providing in-
direct evidence of the presence (or absence) of processes such as in-
trogression or incomplete lineage sorting, displayed by the proportion
of quartets (four-taxon subtrees) compatible with the obtained species
tree. The three SNP datasets were analyzed in PAUP* 4.0a (Cummings,
2004) with the following settings: evaluate all possible quartets,
handling of ambiguities: distribute and 100 bootstrap replicates. Two
types of analysis were run: using a taxon partition to assign individual
sequences to the six lineages from Marchán et al. (2017) and without
taxon grouping.

2.5. Genetic structure

In order to visualize major trends of genetic structure on the studied
individuals, a principal component analysis (PCA) was performed using
the function glPCA in the R package adegenet v2.0.1 (Jombart, 2008;
Jombart and Ahmed, 2011). Unlinked SNP datasets were used as input.

Bayesian clustering was performed in STRUCTURE 2.3.4 (Pritchard
et al., 2000). STRUCTURE is frequently chosen to study population
structure within species, but an increasing number of works have
shown its potential to study closely related species: this approach de-
tects the uppermost level of genetic structure, which can correspond to
species-level genetic differentiation (Garg et al., 2016). After ex-
ploratory runs, the number of genetic clusters K was limited to the
range 1–7, and 10 separate runs for each K (1–7) were performed, each
consisting on 100,000 generations of burn-in and 100,000 generations
of MCMC sampling. Structure Harvester (Earl and vonHoldt, 2012) was
used to identify the optimal number of clusters through the Evanno’s
method (ΔK criterion) (Evanno et al., 2005). The output of the different
iterations was summarized and visualized in CLUMPAK (Kopelman

et al., 2015).

2.6. Genital chaetae extraction and imaging

Thirteen populations were chosen from amongst the previous se-
venteen to undergo an in-depth morphological analysis of their genital
chaetae. Seven of them -BAR, UCE, LOY, SAL, SEV, TAM and TB (see
Fig. 1)- were newly studied for this work. The obtained data was
combined with the information from the six populations included in
Marchán et al. (2016), providing a good representation of the different
lineages and their internal clades.

Genital chaetae were extracted from three different adult specimens
from each of the seven populations. The chaetae were cleaned from
remaining tissues by being treated with hydrogen peroxide 30%
(100 vol) for five minutes. Chaetae from each specimen were pooled
together and glued on aluminum stubs using double-sided carbon tape,
air-dried and sputter-coated 90 s with gold. Scanning electron micro-
graphs were taken on a JEOL JSM-6335F field emission scanning
electron microscope in the ICTS National Center of Electron Microscopy
(Madrid, Spain).

2.7. Geometric morphometrics

Geometric morphometrics analyses of the genital chaetae were
performed using the software tpsUtil and tpsDig2 for the acquisition of
landmarks, and MorphoJ for the Canonical Variate Analysis (CVA) and
Discriminant Function Analysis (DFA). Landmarks established in
Marchán et al. (2016) (tip of distal denticles, mid-point between the
distal denticles, anterior end of the lateral ridges, lateral limits of the
first clearly developed ring, points of maximum width between the
lateral ridges -see Fig. 2) were chosen for the analysis, obtained from
dorsal views of the distal part of genital chaetae. Genital chaetae were
grouped by population and populations were subsequently grouped
according to the main hypotheses recovered by the phylogenetic re-
construction, PCA and Bayesian clustering analysis.

2.8. Detection of selection and functional analyses

To detect selection signatures, the ‘reference-one SNP’ dataset was
analyzed with PCAdapt, which jointly determines population structure
and outlier loci (Duforet-Frebourg et al., 2014) and is, therefore, in-
dependent from any a priori assumption on population structure. Fsthet

Fig. 2. Example of scanning electron micrograph of the distal tip of the genital
chaetae of Carpetania elisae, showing morphological landmarks chosen for the
geometric morphometrics analyses: (A) tip of distal denticles, (B) mid-point
between the distal denticles, (C) anterior end of the lateral ridges, (D) lateral
limits of the first clearly developed ring, E) points of maximum width between
the lateral ridges. Scale bar: 10 πm.
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(Flanagan and Jones, 2017) was chosen as a second method relying on a
different approach to outlier identification. Fsthet calculates smoothed
quantiles from a SNP dataset, identifying SNPs as candidates for se-
lection when their FST values relative to expected heterozigosity values
fall outside such quantiles.

In both cases, detected outlier SNPs were parsed to the corre-
sponding contig using the Carpetania elisae transcriptome, and the
surrounding regions (i.e., the coding sequence - CDS - region where
each SNP lies) were analyzed to identify their most likely biological
function as described below.

Untranslated regions (both 3′ and 5′-UTR) and CDS within tran-
scripts (i.e., defined by opening reading frames, ORFs) were identified
with Trinity and TransDecoder, respectively (Haas et al., 2013) both for
the reference transcriptome (reference hereafter) and the subset of
contigs containing the SNPs with selection signatures (under selection
hereafter). The location of SNPs under selection detected by PCAdapt
and fsthet in both UTR and ORF regions was annotated. Reference and
under selection datasets were annotated with eggNOG-mapper (Huerta-
Cepas et al., 2017), which uses precomputed eggNOG-based orthology
assignments for fast functional annotation.

A Gene Ontology (GO) enrichment analysis was performed with
fatiGO (Al-Shahrour et al., 2007) to test if certain biological functions
were more represented in one of the datasets. ‘Enrichment’ refers to
genes (or their putative functions) that are over-represented in a list of
genes (for instance, the list of genes where SNPs under selection lie)
compared to the whole set of genes (i.e., the full transcriptome). En-
richment detection relies on a statistical comparison of the annotations
of both sets of genes considering a p-value of 0.05. Two analyses were
performed: (a) enrichment of under selection genes vs all the tran-
scriptome -reference, and (b) enrichment of under selection genes vs non-
selected genes from the transcriptome (to enhance detection). For a
more clear visualization, reduction of redundancy of GO terms (for the
under selection dataset) and visualization were performed using REVIGO
(http://revigo.irb.hr/) (Supek et al., 2011). Default parameters were
used, with an ‘allowed similarity’ threshold of 0.5. Genes annotated
with GO terms associated with particularly relevant biological pro-
cesses (see below) were parsed from the reference dataset. The peptide
sequences were further annotated manually with BLASTp (https://
blast.ncbi.nlm.nih.gov/) and Uniprot (https://www.uniprot.org/).

The concatenated sequences of SNPs with selection signatures were
used as the input for a ML phylogenetic analysis (see section 3 above) in
order to check if selection was limited to population-level local adap-
tation (i.e., a star-shaped phylogenetic tree would be recovered) or
selected mutations were shared at higher phylogenetic levels (phylo-
genetic relationships between populations would reflect the species
tree).

3. Results

3.1. Genotyping-by-sequencing and SNP discovery

Illumina sequencing of GBS libraries for 85 individuals resulted in a
total of 610,184,897 reads. Numbers of reads per individual ranged
from 505,635 to 7,110,219, with a mean of 2,418,275. One individual
(SEV5) was removed due to the low number of reads (2948).

The different datasets contained the following number of SNPs: ‘de
novo-all SNPs’ 26,240, ‘de novo-one SNP’ 4767, and ‘reference-one
SNP’ 3181.

As genomic diversity and population genomics statistics were si-
milar across the datasets, only those obtained from the ‘de novo-all
SNPs’ are reported in Table 1. Most populations showed similar genetic
variability, with five of them (COL, PNT2, PR1, UCE, and TAM)
showing noticeably higher values for most of the parameters. Observed
heterozigosity was higher than expected for all populations. Six popu-
lations (BAR, BOA, F1, LOY, PR1, and TAM) showed negative FIS values
very close to 0, indicating individuals are less related than expected

under a model of random rating, while the other eleven populations
showed positive values, indicative of more closely related individuals
than expected.

Pairwise FST values (Suppl. Table 2) were high (mean=0.64) and
significant (p < 0.05), with FST values between populations included
in different clusters (see Phylogenetic analysis) (mean= 0.67) being
higher than FST values within clusters (mean= 0.56).

3.2. Phylogenetic analysis

Phylogenetic relationships recovered from the datasets ‘de novo-all
SNPs’ (Fig. 3), ‘de novo-one SNP’ and ‘reference-one SNP’ were mostly
congruent. Main clades mimicked the deep lineages found in Marchán
et al. (2017), separated in three main groups congruent with the po-
pulation structure analysis (see below): A) lineage I B) lineages II and IV
and C) lineages III, V and VI. Relationships within these groups were
not clearly defined, as lineage II was recovered as paraphyletic with
LOY branching either basally or closer to lineage IV populations, and
lineages III and V were recovered in a clade with a very short branch
separating them from lineage VI.

The species trees obtained with SVDQuartets are shown in Fig. 3b,
3c. Topologies obtained from the three SNP datasets were congruent.
The total weight of compatible quartets for analyses grouping se-
quences by lineages from Marchán et al. (2017) was 87.65%, and
96.90% for analyses with ungrouped individuals. These high values
indicate an almost complete absence of introgression and incomplete
lineage sorting. In both cases, the three main clades shown by the
maximum likelihood phylogenetic analyses were recovered with high
bootstrap support.

3.3. Genetic structure

First five principal components obtained by the Principal
Component Analysis (PCA) explained 13.6%/11.6%/9.1%/8.0%/7.4%
of variance. Representation of the first two PCs (Fig. 4a) showed three
main genetic clusters, which corresponded with the three main groups
of populations recovered in the phylogenetic trees (Fig. 3A, B and C).
Populations within lineage I clustered tightly with UCE, being the most
divergent within that cluster. Populations from lineages II and IV
showed a certain degree of separation within cluster B, while in cluster
C lineage VI diverged the most from the rest of the populations.

STRUCTURE analysis estimated the optimal K for ‘de novo-one SNP’

Table 1
Genomic diversity statistics obtained from the denovo_all dataset. Private:
number of private alleles. Sites: number of variant nucleotide positions across
the dataset. % Poly: percentage of polymorphic loci within the population. Hobs:

average observed heterozigosity. Hexp:average expected heterozigosity
π:average nucleotidic diversity. FIS: average inbreeding coefficient.

Population Sites %Poly Private Hobs Hexp π FIS

BAR 17,224 0.74301 912 0.0192 0.0170 0.0189 −0.0003
BOA 13,621 0.51916 751 0.0131 0.0115 0.0128 −0.0004
CNG 16,036 0.9129 799 0.0199 0.0184 0.0204 0.0012
COL 18,531 1.41761 1337 0.0355 0.0324 0.0360 0.0011
F1 18,849 0.41221 703 0.0103 0.0091 0.0101 −0.0005
HON 17,647 0.75366 794 0.0185 0.0166 0.0185 0.0003
LOY 19,128 0.4398 1051 0.0137 0.0110 0.0122 −0.0029
PED 16,785 0.96378 722 0.0211 0.0191 0.0212 0.0005
PNT2 18,268 1.72951 1339 0.0412 0.0398 0.0443 0.0067
POL 13,904 1.39305 727 0.0289 0.0272 0.0303 0.0029
PR1 18,003 1.32603 896 0.0330 0.0281 0.0312 −0.0035
SAL 15,772 0.98848 1362 0.0239 0.0218 0.0243 0.0014
SEV 13,602 0.79526 722 0.0190 0.0175 0.0200 0.0021
TAM 15,961 1.55836 1454 0.0571 0.0389 0.0432 −0.0264
TB 18,073 0.66944 943 0.0170 0.0157 0.0174 0.0011
UCE 18,007 1.29482 1561 0.0297 0.0286 0.0318 0.0051
VRN 16,362 0.99629 1509 0.0259 0.0236 0.0262 0.0005
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dataset to be 3, while the optimal K for ‘reference-one SNP’ dataset was
5. Genetic clusters at K= 3 included the same individuals and popu-
lations for both datasets (Fig. 4b), which matched with the previously
identified groups (A: lineage I, B: lineages II+ IV and C: lineages III, V
and VI). K= 5 identified further subdivision within these clusters,
which differed between the datasets. In the case of ‘de novo-one SNP’,
the individuals corresponding to lineage II formed a separate cluster
from lineage IV individuals, although some degree of admixture was
observed (Fig. 4b-left), while they were all recovered in a homogeneous
cluster in the ‘reference-one SNP’ dataset analysis (Fig. 4b-right). In ‘de
novo-one SNP’ analysis individuals from lineage III and V were clearly
separated in two clusters, while individuals from lineage VI showed a
strong admixture of both (Fig. 4b-left); in ‘reference-one SNP’ analysis
lineage V and VI were assigned to different clusters (lineage V showing
some admixture) while individuals from lineage III showed admixture
between the former clusters and a third one corresponding to the an-
cestral population dominating UCE individuals (belonging to lineage I)
(Fig. 4b-right). The distinctness of UCE individuals was not recovered in
the ‘de novo-one SNP’ analysis, in which lineage I individuals formed a
very homogeneous cluster (Fig. 4b).

3.4. Geometric morphometric analyses of genital chaetae

Canonical variate analysis of the shape of the genital chaetae
showed differences when the input groupings represented the K= 3
STRUCTURE clusters and the cryptic lineages from Marchán et al.
(2017) (Fig. 5). For K=3, genital chaetae from specimens assigned to
the cluster A (Lineage I) were clearly separated from chaetae from
clusters B (lineages II and IV) and C (lineages III, V and VI), though the
two latter showed a moderate overlap in their confidence ellipses
(Fig. 5a). The analysis based on the grouping by lineages showed the
same separation of lineage I, and also a clear separation of lineage II,
with lineage IV overlapping with the rest of the lineages (Fig. 5b).

Results of the Discriminant Function Analysis using the K= 3
grouping are shown in Suppl. Table 3. Assignments and cross-validation
tests were highly accurate except for Cluster B-Cluster C comparisons,
were 40% and 29.5% of chaetae were missasigned in cross-validation.
Nonetheless, all pairwise comparisons were statistically significant (p-
value < 0.05 for 1000 permutation runs).

3.5. Putative loci under selection

PCAdapt found 867 outlier SNPs. In the reference dataset, 51,720
Opening Reading Frames (ORFs), a proxy for peptides, were identified,
and 20,817 ORFs were successfully annotated with eggNOG-mapper
(40.25% of the reference transcriptome). In the under selection dataset
1406 ORFs were identified, and 557 ORFs were annotated with 4871
GOs (39.615% of the contigs at protein level). These GO terms are
summarized in a treemap graph obtained in REVIGO (Fig. 6a, Suppl.
Fig. 2). The whole annotated dataset is shown in Suppl. Table 4. Some
examples of putative proteins with local adaptation signatures involve
functions related to metabolism, reproduction, reception of stimuli, and
development, among others, and their inferred biological function are
shown in detail in Suppl. Table 5. Several protein-coding genes with
selection signatures showed shared alleles within each of the three main
clusters. Putative proteins and their most likely biological function are
shown in Table 2.

fsthet detected 269 outlier SNPs, for which the FST/heterozigosity
ratio was significantly higher or lower than expected (Suppl. Fig. 3).
Fourteen outlier loci matched with the ones found by PCAdapt, and 73
were located in the same contigs as the PCAdapt SNPs with selection
signatures. 489 ORFs were identified, and 129 ORFs were annotated.
GO terms are summarized in a treemap graph obtained in REVIGO
(Fig. 6b). A few protein-coding genes with selection signatures showed
shared alleles within each of the three main clusters. Putative proteins
and their most likely biological function are shown in Table 2.

Maximum likelihood inference based on the concatenated sequence
of the 867 outlier SNPs recovered well-resolved phylogenetic relation-
ships between the populations (Suppl. Fig. 4), lineages and higher level
groups, suggesting selection signature was pervasive through the dif-
ferent taxonomic levels.

GO enrichment analysis showed that genes with SNPs under selec-
tion (detected by PCAdapt) were statistically enriched at the biological
function level (p-value < 0.05) in regulation of transcription regula-
tion, as well as signal transduction, chromosome organization, devel-
opment and mitotic anaphase, among others (Fig. 7a, Suppl. Fig. 5), as
well as RNA binding, nucleoside triphosphatase activity and chromatin
binding at the molecular function level (Fig. 7b, Suppl. Fig. 6) and
complexes, cell, and cell part at the cellular component level (Fig. 7c,
Suppl. Fig. 7). Remarkably, several SNPs under selection were found in
UTR regions placed in 83 different contigs (Suppl. Table 6). Genes in-
cluding outlier SNPs identified by fsthet showed enrichment for no
biological function, molecular function or cellular component.

4. Discussion

4.1. Integrative taxonomy identified three putative cryptic species within the
Carpetania species complex

The different analyses applied to the genome-wide genetic in-
formation provided by GBS evidenced two clear patterns. First, the
uppermost level of genetic structure within the studied populations of
Carpetania identified three main and distinctive clusters, each of them
including one or several of the six cryptic lineages previously identified
in Marchán et al., (2017). Second, one of those clusters (termed C
through this work) showed a higher level of internal genetic diver-
gence, with presence of clear substructure in three lineages but hints of
admixture between them, that is, presence of DNA from a distantly-
related population as a result of interbreeding between genetically
differentiated populations.

The information provided by the geometric morphometrics analyses
of the genital chaetae of Carpetania supported to a significant extent the
separation of the genetic clusters, albeit with a high degree of overlap
as revealed by the canonical variate analysis. The shape of the genital
chaetae of clusters B and C showed overlap according to the canonical
variate analysis, explained by chaetae from lineage IV - comprised in
cluster B as revealed by the phylogenetic analyses (Fig. 5b) - being si-
milar to chaetae from cluster C. Convergent evolution in the shape of
chaetae of lineage IV and cluster C could explain the observed pattern.
Morphological differentiation of these clusters, even if not absolutely
clear-cut, suggest they should be considered pseudocryptic (as in above
the resolution of morphological analysis) instead of cryptic taxonomical
entities.

Several studies have elevated above-population clusters to species
level, using genome-wide diversity data (e.g. Brunet et al., 2017; Pinto
et al., 2019). This has been done even in the absence of morphological
evidence (Warner et al., 2015; Garg et al., 2016; Dincă et al., 2019), but
has also been confirmed by geometric morphometrics and other cryptic
characters (Alter et al., 2017). One criterium proposed for robust spe-
cies delimitation in cryptic taxa is genetic distinctiveness in sympatry
(Mallet, 1995). However, Marchán et al. (2017) found no sympatry of
the different lineages in small scale transects separated just by a few
hundred meters. On the other hand, genetic cohesiveness across allo-
patric populations (Good and Wake, 1992; Mallet, 1995) is clearly
fulfilled: BAR and HON populations, for example, are separated 100 km
but show very little differentiation.

Following these results, the most robust systematic proposal for the
cryptic (or pseudo-cryptic) species within the genus Carpetania would
therefore consist of three species. One of them (cluster C) may contain
enough genetic diversity to consider the future possibility of assigning
subspecific status to its internal genetic lineages in order to recognize
their distinctness and improve biodiversity conservation efforts. Further
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research within this clade will help elucidate this taxonomic necessity.
Formal description of the putative three cryptic species can be found in
Marchán et al. (in press).

4.2. Local adaptation fuels cryptic speciation in the Carpetania species
complex

The finding of selection signatures in genes across the genome
provided a highly valuable insight into the evolutionary processes
governing the Carpetania cryptic species complex. Several of the loci
under selection respond to a pattern of local adaptation, as selected
mutations appeared in single populations. This suggests that isolated
populations of this cryptic complex evolved independently as a re-
sponse to local environmental conditions, which could have fueled
cryptic speciation in the long term. Little is known about the genomic
basis of local adaptation in cryptic lineages in nonmodel organisms.
Boissin et al. (2011) found compelling correlation between adaptation

to local conditions (in their study correlated to oligotrophy), evolution
of reproductive traits and cryptic speciation on the ophiuroid Ophio-
derma longicauda. Interestingly, locally-adapted lineages showed re-
duced dispersal ability when compared to other lineages. This is con-
sistent with postulates from Bickford et al. (2007), that suggested that
directional selection on traits with no apparent morphological corre-
lates could drive cryptic diversification.

Moreover, the distinctiveness of the shared adaptive mutations
across cryptic (or pseudocryptic) species confirmed their relevance as
biological entities: the absence or scarcity of morphological differences
does not reflect their genetic, physiological or metabolic diversity. As
mentioned above, these cryptic features have been identified by dif-
ferent approaches in independent cryptic complexes (reviewed in
Marchán et al., 2018a), but have rarely been studied by genome-wide
analyses (Anderson et al., 2017; Shekhovtsov et al., 2019). We em-
phasize that integrative-centered studies guided by state-of-the-art
methodologies are therefore most needed to further understand genome

Fig. 5. Geometric morphometrics analysis of distal tip of genital chaetae of Carpetania populations. (a) Canonical variate analysis grouping observations by STR-
UCTURE K=3 clusters. (b) Canonical variate analysis grouping observations by cryptic lineages defined in Marchán et al. (2017). Equal frequency ellipses
(probability= 0.9) are displayed for observations belonging to the different groups. Deformation grids display morphological landmarks and shape change re-
presented by each axis.
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evolution and adaptation in cryptic non-model organisms.

4.3. Regulation of gene expression may drive cryptic speciation in the
Carpetania species complex

Once considered as useless or junk mRNA, it is now well-known that
UTR regions are involved in many aspects of regulation of gene ex-
pression. The 3′ UTR region has been shown to play a key role in
translation termination as well as post-transcriptional gene expression
(Matoulkova et al., 2012; Young and Wek, 2016; Leppek et al. 2017;
Ren et al. 2017; Mayr 2018). Although a few case reports have shown
that mutations and variants in these regions can have important
genomic consequences, such as disease (Chen et al., 2006), genetic
sequencing approaches typically focus on protein-coding regions and
ignore these variants, particularly in studies dealing with non-model
organisms, where this is a virtually unexplored field. In this work, a
remarkable proportion (9.6%) of the SNPs under selection were located
in UTR regions. It has been shown that a few nucleotide substitutions in
UTR regions can significantly alter protein expression, measured as
protein abundance (Dvir et al., 2013); that study, demonstrated the
powerful consequences of sequence manipulations of even 1–10 nu-
cleotides immediately upstream of the start codon, which resulted in
significantly altered abundance of expressed proteins in yeast.

Likewise, GO enrichment analysis identified that genes were SNPs
under selection concentrate (i.e., the under selection dataset as described
above) are enriched in transcription regulation activity compared to all
other genes in the transcriptome (as shown in Fig. 7a). The hypothesis
that differences in gene regulation play an important role in speciation
and adaptation is not new (as reviewed in Romero et al., 2012).
Changes in gene regulation (i.e., regulatory divergence) have shown to
play a major role both in intrinsic pre- and/or post-zygotic isolation and
in establishing other reproductive barriers as a byproduct of adaptive
divergence, as in the case of ecological speciation (Pavey et al., 2010;
Xu et al., 2016 Mack and Nachman, 2017; Deng et al., 2018). Gene
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Table 2
Putative proteins with shared alleles (corresponding to SNPs with selection signatures detected by PCAdapt and fsthet -indicated by an asterisk) between populations
assigned to clusters A-B-C.

Cluster A Nuclear hormone receptor HR96 Controls tryglycerid and cholesterol homeostasis, affecting response to starvation
Rabenosyn-5 Role in endosomal and lysosomal transport. Involved in the blood coagulation pathway
NADP-dependent oxidoreductase domain-
containing protein 1

Probable oxidoreductase

JNK-interacting protein 1 Involved in axonal transport of mitochondrion and synaptic vesicle transport
ATP-dependent zinc metalloprotease YME1L1 Ensures cell proliferation, maintains normal cristae morphology and complex I respiration activity, promotes

antiapoptotic activity and protects mitochondria from oxidatively damaged membrane proteins
Cleavage stimulation factor subunit 2 mRNA processing
Histone-lysine N-methyltransferase 2A Essential role in early development, hematopoiesis and control of circadian gene expression
Nucleoporin p54 Component of the nuclear pore complex,
Collagen alpha-1(II) chain In vertebrates, specific for cartilaginous tissues
Ral GTPase-activating protein subunit beta GTPase activator
Protein crumbs homolog 2 Apical polarity protein that plays a central role during the epithelial-to-mesenchymal transition at gastrulation
snRNA-activating protein complex subunit 4 Required for the transcription of both RNA polymerase II and III small-nuclear RNA genes
Pericentrin Integral component of the filamentous matrix of the centrosome involved in the initial establishment of

organized microtubule arrays in both mitosis and meiosis
Collagen-like protein*
Histone-lysine N-methyltransferase, H3 lysine-79
specific*

Histone methyltransferase. Required for Polycomb Group and trithorax Group maintenance of expression in
Drosophila. Also involved in telomeric silencing

Cluster B JNK-interacting protein 1 May function as a regulator of synaptic vesicle transport. In C. elegans it has been linked to locomotion,
ovoposition and defecation

Vinexin Involved in smooth muscle contraction
Ankyrin repeat domain-containing protein 26* Acts as a regulator of adipogenesis. Involved in the regulation of the feeding behavior.

Cluster C RNA helicase aquarius Involved in pre-mRNA splicing as component of the spliceosome
Probable sodium/potassium/calcium exchanger
CG1090

Possible function in the removal and maintenance of calcium homeostasis

Cytochrome P450 2U1 Catalyzes the hydroxylation of long chain fatty acids
Zinc transporter 2 Zinc ion transmembrane transport
Host cell factor 1 Involved in control of the cell cycle
Protein eva-1-like* Acts as a receptor for slt-1. Required for the guidance of the AVM pioneer axon to the ventral nerve cord.
Rho GTPase-activating protein 32* GTPase-activating protein promoting GTP hydrolysis. May be involved in the differentiation of neuronal cells

during the formation of neurite extensions.
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expression might promote ecological speciation in two ways: indirectly
by promoting population persistence (as suggested by studies of plas-
ticity in morphological and behavioural traits related to fitness and
population persistence, and studies of gene expression responses during
ecological shifts, particularly those resulting in exposure to ecological
stress), or more directly by affecting adaptive genetic divergence in
traits causing reproductive isolation (Pavey et al., 2010). Indeed, as
described below, we found genes with SNPs under selection related to
reproduction, particularly hormonal pathways. Altogether, our results
provide preliminary evidence showing that local adaptation may be
reshaping regulation in gene expression in the Carpetania species
complex, and it opens the door to further empirical testing of the hy-
pothesis that regulatory divergence is indeed a major driver of cryptic
speciation in soil fauna.

4.4. Loci under selection in the different cryptic species are putatively
related to a plethora of biological functions related to reproduction and
interactions with the environment

Even though selection signatures were detected in genes with pu-
tative biological functions related to a diversity of biological processes,
some of those were especially suggestive from the point of view of the
divergence and radiation of the cryptic complex. Several of the proteins
studied in detail (featured in Table 1) are expected to be involved in the
interaction of Carpetania with their environment, with those related to
metabolism, immune system and response to environmental stress
being the most relevant, such as 14–3-3 protein zeta-like or Serine/
threonine-protein kinase TBK1. Local adaptation in such proteins could

lead to the evolution of differential ecological preferences as seen in
other cryptic species complexes, in diatoms, wildflowers and earth-
worms (Vanelslander et al., 2009; Yost et al., 2012; Spurgeon et al.,
2016).

Considering the particularities of soil as a habitat and the biology of
earthworms, proteins related to hypoxia (as Manganese superoxide dis-
mutase, Homeodomain-interacting protein kinase 2 or Hypoxia-inducible
factor 1-alpha isoform X1) appear as a potentially-relevant target for
adaptation. Soil flooding or soil compaction can result in deficient soil
aeration and reduced available oxygen, representing a limiting factor
for soil fauna. An increase in the ability to cope with these environ-
mental pressures could lead to an increase in population persistence or
the colonization of new niches. MAP3K12, with its role in UV-induced
DNA damage and osmolarity changes regulation, could also be a re-
levant protein in local adaptation to environment by providing en-
hanced resistance to the harmful effect of exposure to solar radiation
and changes in water availability.

It should be noted that some genes with putative sensory or beha-
viour-related functions showed signals of local adaptation as well. For
example, annetocin receptor was among these genes: the closely related
arginine vasopressin (AVP) receptors in the brain of rodents have an
important effect on sexual behaviour and mate choice (Horth, 2007).
Other examples are the Coiled-coil and C2 domain-containing protein 1-
like protein and Sal-like protein 1, involved in sensory organ development
(Klein, 2003; de Celis et al., 2009) or Putative transcription factor ca-
picua, involved in central nervous system development (Lu et al., 2017).
These mutations under selection could affect intraspecific mate re-
cognition, promoting the development of pre-zygotic reproductive
barriers and isolation between the evolutionary diverging cryptic spe-
cies. A precopulatory sexual selection behaviour has been previously
observed for cryptic earthworm species (Jones et al., 2016). Interest-
ingly, neither attractin nor temptin, two pheromones previously identi-
fied in Carpetania (Novo et al., 2013) were found among genes with
selection signatures. It would be expected for mutations within these
genes to be under positive selection, as species-specific pheromones
would preclude or hinder interspecific mating and facilitate re-
productive isolation. As GBS is a reduced representation technique, it is
possible that these genes were not included in our datasets. Targeted
Sanger sequencing of these genes would allow to test for divergence and
selection signatures between the three species of Carpetania.

Among the reproduction-related genes found to possess selection
signatures, the annetocin receptor (Kawada et al., 2004) is noteworthy.
Annetocin, a neuropeptide related to oxytocin, has been found to elicit
egg-laying behaviour in the earthworm Eisenia fetida (Oumi et al.,
1996). Beyond this well-known function, this signaling pathway could
be involved in other reproductive behaviours, as is the case with oxy-
tocin - male copulative behaviour in snail Lymnaea stagnalis, co-
ordination of reproductive behaviour in roundworm C. elegans (Gruber,
2014) - thus having a potential effect on reproductive isolation and
differential reproductive success. Although putative, these functions
may provide hints about how local adaptation might be reshaping the
genome of the Carpetania cryptic species complex. More conclusive
functional experiments will help to validate these findings.

5. Conclusions

In this piece of work, we show the potential to characterize and
delimit robust species within cryptic complexes in soil milieu through
the study of genome-wide genetic variability in the terrestrial annelid
Carpetania, together with the exploration of inconspicuous morpholo-
gical variability. The pervasive presence of local adaptation signatures
in functionally diverse loci across the genome of these pseudocryptic
species does not only confirm their biological relevance as distinct
entities beyond their apparent homogeneity, but it also sheds light into
the underlying genetic basis for cryptic speciation. These selection
signatures also confirm the potentially important role of regulation of
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gene expression in adaptation and speciation within species complexes.
Finally, the detection of putative genes subjected to local adaptation
allowed identifying biologically relevant proteins with a potential role
in the interaction of soil fauna with their environment, as well as pro-
teins that could be involved in the reproductive isolation of cryptic
species. Altogether, our results indicate that local adaptation and reg-
ulatory divergence provided an arena of genetic novelty to reshape the
genome of three cryptic species of terrestrial annelids, possibly fueling
ecological speciation. Future genomic studies will help elucidate with
more precision the genetic underpinnings of these evolutionary pro-
cesses. We emphasize that integrative taxonomic-centered studies are
therefore most needed to further understand genome evolution in
nonmodel soil organisms.
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